Lesson goal: Sin, cos and circles

Previous: Test the sin/cos identity graphically | Home | Next: Coaxing Pi from the computer

Polar plots are fun because interesting curves can be created that would be much harder in $xy$-coordinates. Polar plots are defined by two variables, $r$ and $\theta$. Here, $r$ is the distance from the origin $(0,0)$ and $\theta$ is the angle from the $+x$-axis. We'll make some interesting polar plots here.

Now you try. Try fixing the r= statement.

Type your code here:


See your results here:

This code will not run. You have to put in some function for the r= line. Try these
  • $r=1+cos(\theta)$
  • $r=5cos(5\theta)$
  • $r=sin(\theta)cos(\theta)$
  • $r=sin(\frac{10\theta}{7})$
  • $r=sin(\frac{5\theta}{3})$
  • $r=sin(\frac{\theta}{3})$
  • $r=2e^{0.001\theta}$ (this one might take a few seconds to finish).
Note that $\theta$ is theta here and if you plot is too small or large, try changing the value of the variable zoom Dismiss.
Show a friend, family member, or teacher what you've done!

Here is a share link to your code:

Does your code work? Want to run it on your iPhone?

Here's your code:

  1. Use [Control]-[C] (Windows) or [⌘]-[C] (MacOS) to copy your code.

  2. Paste it using [Control]-[V] (Windows) or [⌘]-[V] (MacOS) into this page

  3. Then click the "Use on iPhone" button that you'll see.